45 Degree End Mill Milling Cutter AlTiN Coating Round End Mill Groove R6
Product Details:
Place of Origin: | China |
Brand Name: | BWIN |
Model Number: | Φ6R1.0*15*d6*50L |
Payment & Shipping Terms:
Minimum Order Quantity: | 1pcs/box |
---|---|
Price: | Negotiable |
Packaging Details: | Plastic box |
Delivery Time: | 7 work days |
Payment Terms: | T/T, Western Union |
Supply Ability: | 1-10000pcs 7days |
Detail Information |
|||
Product Name: | Carbide Corner Radius Milling Cutter | Model: | HRC45 Corner Radius End Mill |
---|---|---|---|
Material: | Solid Carbide Radius Corner Endmill | Workpiece: | Medium Carbon Steel |
Usage: | Milling | Coating: | AlTiN |
HRC: | HRC45 | Feature: | Sharp Cutting |
Application: | CNC Machining | Package: | 1pcs/Box |
High Light: | 45 Degree End Mill Milling Cutter,End Mill Milling Cutter AlTiN Coating,AlTiN Coating Round End Mill |
Product Description
Cnc Carbide End Mill 2F Flat Endmill HRC45 Milling Cutter CVD Coated 1.5mm 6mm
HRC45 4 Flute Carbide Corner Radius End Mill Milling Cutter Round Groove Endmill R6
Characteristic:
- High quality tungsten steel raw materials
- Advanced Grinder Technology
- Wear-resistant coating
- Sharp cutting
- Smooth chip removal
Description:
- The corner radius end mill with high hardness, good wear resistance and wide application range is made by using high-quality tungsten steel cemented carbide base material, introducing advanced grinding machine equipment and German production and manufacturing technology; Double edge band milling, which increases the rigidity of the edge band, can effectively remove burrs; The unique chip holding groove shape prevents the generation of chip buildup; The round and smooth handle with precise chamfering can reduce the number of tool changes and save the production time.
Milling parameters:
HRC45 Carbide End Mill |
Tool length | fz&v | |||||
Short |
1 |
||||||
Long1 | 0.9 | ||||||
Overlength | 0.8 | ||||||
Speciality | 0.6 | ||||||
Type | Material |
Strength N/mm²
Hardness HRC |
Cooling | ||||
Air |
Dry cutting |
Lubricating fluid | |||||
P | PI |
P1.1 |
Non alloy structural steel, free cutting structural steel, carburized steel and quenched and tempered steel | <700 | √ | √ | √ |
P1.2 | quenched and tempered steel | <1200 | √ | √ | √ | ||
P2 | P2.1 | Alloyed nitrided steel, carburized steel and quenched and tempered steel | <900 | √ | √ | √ | |
P2.2 | Tool steel, bearing steel, spring steel and high-speed steel | <1400 | √ | √ | |||
P3 | P3.1 | Tool steel, bearing steel, spring steel and high-speed steel | <900 | √ | √ | √ | |
P3.2 | Tool steel, bearing steel, spring steel and high-speed steel | <1500 | √ | √ |
Sloting | ||||||||||||
Vc (m/min) |
fz(mm/Tooth) | |||||||||||
Diameter | ||||||||||||
2 | 4 | 6 | 8 | 10 | 12 | 16 | 20 | |||||
112 | 0.01 | 0.018 | 0.026 | 0.034 | 0.041 | 0.048 | 0.06 | 0.069 | ||||
92 | 0.01 | 0.017 | 0.025 | 0.032 | 0.038 | 0.045 | 0.056 | 0.065 | ||||
100 | 0.01 | 0.018 | 0.026 | 0.034 | 0.041 | 0.048 | 0.06 | 0.069 | ||||
72 | 0.009 | 0.015 | 0.022 | 0.028 | 0.034 | 0.04 | 0.05 | 0.058 | ||||
64 | 0.01 | 0.018 | 0.025 | 0.032 | 0.039 | 0.045 | 0.057 | 0.066 | ||||
56 | 0.009 | 0.016 | 0.023 | 0.029 | 0.036 | 0.041 | 0.052 | 0.06 |
Roughing | ||||||||||||
Vc (m/min) |
fz(mm/Tooth) | |||||||||||
Diameter | ||||||||||||
2 | 4 | 6 | 8 | 10 | 12 | 16 | 20 | |||||
228 | 0.018 | 0.031 | 0.045 | 0.057 | 0.070 | 0.081 | 0.101 | 0.118 | ||||
208 | 0.017 | 0.029 | 0.042 | 0.054 | 0.065 | 0.071 | 0.095 | 0.11 | ||||
184 | 0.018 | 0.031 | 0.045 | 0.057 | 0.070 | 0.081 | 0.101 | 0.118 | ||||
144 | 0.015 | 0.026 | 0.037 | 0.048 | 0.058 | 0.068 | 0.085 | 0.098 | ||||
132 | 0.017 | 0.03 | 0.042 | 0.054 | 0.066 | 0.077 | 0.096 | 0.112 | ||||
112 | 0.015 | 0.027 | 0.039 | 0.05 | 0.060 | 0.07 | 0.088 | 0.102 |
Finish | |||||||||||
Vc m/min |
fz(mm/Tooth) | ||||||||||
Diameter | |||||||||||
2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | ||
332 | 0.028 | 0.05 | 0.07 | 0.091 | 0.11 | 0.128 | 0.144 | 0.16 | 0.173 | 0.186 | |
272 | 0.026 | 0.046 | 0.066 | 0.085 | 0.103 | 0.12 | 0.135 | 0.15 | 0.162 | 0.173 | |
304 | 0.028 | 0.05 | 0.07 | 0.091 | 0.11 | 0.128 | 0.144 | 0.16 | 0.173 | 0.186 | |
212 | 0.023 | 0.041 | 0.059 | 0.076 | 0.092 | 0.107 | 0.121 | 0.134 | 0.145 | 0.155 | |
196 | 0.027 | 0.047 | 0.067 | 0.086 | 0.104 | 0.122 | 0.137 | 0.152 | 0.165 | 0.177 | |
168 | 0.024 | 0.043 | 0.061 | 0.079 | 0.095 | 0.111 | 0.125 | 0.139 | 0.150 | 0.161 |
- If the following carbide end mill cannot meet your requirements, we support OEM customized production. The diameter of 0.2mm to 25mm, the total length of 50mm to 200mm, 4F, 5F, 6F, 8F and logo can be customized, including inch size end milling cutter. Please contact us to select or customize non-standard carbide end mill according to your needs.
Specification | Flute Dia(D) | R angle | Flute Length (C) | Shank Dia(D) | Overall Length(L) |
Φ3R0.5*8*d3*50L | 3 | 0.5 | 8 | 3 | 50 |
Φ3R1.0*8*d3*50L | 3 | 1.0 | 8 | 3 | 50 |
Φ2R0.5*5*d4*50L | 2 | 0.5 | 5 | 2 | 50 |
Φ3R0.5*8*d4*50L | 3 | 0.5 | 8 | 3 | 50 |
Φ4R0.5*10*d4*50L | 4 | 0.5 | 10 | 4 | 50 |
Φ3R1.0*8*d4*50L | 3 | 1.0 | 8 | 3 | 50 |
Φ4R1.0*10*d4*50L | 4 | 1.0 | 10 | 4 | 50 |
Φ5R0.5*13*d5*50L | 5 | 0.5 | 13 | 5 | 50 |
Φ5R1.0*25*d5*100L | 5 | 1.0 | 25 | 5 | 100 |
Φ6R0.5*15*d6*50L | 6 | 0.5 | 15 | 6 | 50 |
Φ8R0.5*20*d8*60L | 8 | 0.5 | 20 | 8 | 60 |
Φ8R1.0*28*d8*75L | 8 | 1.0 | 28 | 8 | 75 |
Φ8R2.0*20*d8*60L | 8 | 2.0 | 20 | 8 | 60 |
Φ8R3.0*20*d8*60L | 8 | 3.0 | 20 | 8 | 60 |
Φ10R0.5*25*d10*75L | 10 | 0.5 | 25 | 10 | 75 |
Φ10R1.0*25*d10*75L | 10 | 1.0 | 25 | 10 | 75 |
Φ10R1.5*25*d10*75L | 10 | 1.5 | 25 | 10 | 75 |
Φ10R2.0*25*d10*75L | 10 | 2.0 | 25 | 10 | 75 |
Φ10R3.0*25*d10*75L | 10 | 3.0 | 25 | 10 | 75 |
Instructions:
1. Before using the carbide end mill, please measure the tool deflection. If the tool deflection accuracy exceeds 0.01mm, please correct it before cutting.
2. The shorter the carbide e extends out of the collet, the better. If the tool extends out longer, reduce the speed, feed speed or cutting amount.
3. In case of abnormal vibration or sound during cutting, please reduce the speed and cutting amount until the situation is improved.
4. Spray type and air jet type are preferred for steel cooling, which can improve the use effect of carbide end mill.
5. Note: Not suitable for low speed machines such as rotary table and electric hand drill.
Applications:
Pre-hardened Steel, stainless steel, Die steel, steel plate, Heat-resistant steel,pipe, copper and aluminum, cast iron, Nonferrous Metal, Wood, Plastic,FRP and sO on. General-purpose operation slotting, rilling, profiling.
Q1. The tool breaks when cutting in or pulling out the workpiece
The feed rate and cutting depth can be reduced, and the cutting edge length can be shortened to the minimum of the necessary length.
Q2. Tool breaks during normal machining
Reduce the feed rate and cutting depth.
The tool shall be passivated.
Replace the clamp or spring collet.
The tool with high cutting edge number changes the tool with low cutting edge number to improve chip removal and prevent chip blockage.
Replace dry milling with wet milling (using cutting fluid), and use it with vortex tube gun to reduce tool temperature and avoid tool overheating.
If the wet milling fluid supply direction is changed from the front to the oblique rear or transverse top, the coolant flow should be sufficient.
Q3. The tool breaks when the feed direction changes
(1) Use arc interpolation (NC machine tool), or temporarily stop (temporarily) feeding.
(2) Reduce (decrease) the feed before and after the direction change.
(3) Replace the clamp or spring collet.
Q4. Problem: Part of the blade tip breaks
Chamfer the corners with manual grinding.
Change down milling to up milling.